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Distributed Model Predictive Control for
Heterogeneous Vehicle Platoons Under

Unidirectional Topologies
Yang Zheng, Shengbo Eben Li, Keqiang Li, Francesco Borrelli, Fellow IEEE, and J. Karl Hedrick

Abstract— This paper presents a distributed model predictive
control (DMPC) algorithm for heterogeneous vehicle platoons
with unidirectional topologies and a priori unknown desired set
point. The vehicles (or nodes) in a platoon are dynamically decou-
pled but constrained by spatial geometry. Each node is assigned
a local open-loop optimal control problem only relying on the
information of neighboring nodes, in which the cost function is
designed by penalizing on the errors between the predicted and
assumed trajectories. Together with this penalization, an equality-
based terminal constraint is proposed to ensure stability, which
enforces the terminal states of each node in the predictive horizon
equal to the average of its neighboring states. By using the sum
of local cost functions as a Lyapunov candidate, it is proved that
asymptotic stability of such a DMPC can be achieved through an
explicit sufficient condition on the weights of the cost functions.
Simulations with passenger cars demonstrate the effectiveness of
the proposed DMPC.

Index Terms— Autonomous vehicle, distributed control, graph
theory heterogeneous platoon, model predictive control (MPC).

I. INTRODUCTION

THE platooning of autonomous vehicles has received
considerable attention in recent years [1]–[7]. Most of

this attention is due to its potential to significantly bene-
fit road transportation, including improving traffic efficiency,
enhancing road safety, and reducing fuel consumption [1], [2].
The main objective of the platoon control is to ensure all
the vehicles in a group move at the same speed while
maintaining a prespecified distance between any consecutive
followers [5]–[7].
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The earliest practices on the platoon control could date back
to the PATH program in the 1980s, in which many well-known
topics were introduced in terms of sensors and actuators, con-
trol architecture, decentralized control, and string stability [5].
Since then, many other issues on the platoon control have been
discussed, such as the selection of spacing policies [6], [7], the
influence of communication topology [8]–[10], and the impact
of dynamic heterogeneity [11], [12]. In recent years, some
advanced platoon control laws have been proposed under the
framework of multiagent consensus control [13]–[17]. Most
of them employ linear dynamics and linear controllers for the
convenience of theoretical completeness, and do not account
for input constraints and model nonlinearities. A few notable
exceptions are in [14] and [17], where the communication
topologies are assumed to be limited in range. However, the
input constraints and model nonlinearities do exist in a more
accurate problem formulation due to actuator saturation and
some salient nonlinearities involved in the powertrain sys-
tem, e.g., engine, driveline, and aerodynamic drag [18], [19].
Besides, with the rapid deployment of vehicle-to-vehicle
communication, such as DSRC and VANETs [20], various
types of communication topologies are emerging, e.g., the
two-predecessor following (TPF) type and the multiple-PF
type [21], [22]. New challenges for platoon control arise
naturally considering the variety of topologies, especially
when taking into account a large variety of topologies in a
systematic and integrated way.

This paper proposes an innovative solution for the platoon
control, considering both nonlinear dynamics and topological
variety based on the model predictive control (MPC) frame-
work. Traditionally, MPC is used for a single-agent system,
where the control input is obtained by numerically optimizing
a finite horizon optimal control problem, where both nonlin-
earity and constraints can be explicitly handled [23]. This tech-
nique has been embraced by many industrial applications, for
instance, thermal energy control [24], collision avoidance [18],
vehicle stability [25], and energy management [26]. Most of
these MPCs are implemented in a centralized way, where
all the control inputs are computed by assuming that all the
states are known [18], [24]–[26]. When considering an actual
platoon system involving multiple vehicles, the centralized
implementation is not suitable because of the limitation to
gather the information of all vehicles and the challenge to
compute a large-scale optimization problem. In this paper,
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we present a synthesis method of distributed MPC (DMPC)
for a heterogeneous platoon, where each vehicle is assigned a
local optimal control problem only relying on its neighboring
vehicles’ information.

Recently, several DMPC schemes have been proposed
for dynamically coupled or decoupled multiagent
systems [27]–[30]. The asymptotic stability was usually
established by employing the consistency constraints, e.g., the
mismatch between newly calculated optimal trajectories and
the previously calculated ones must be bounded [27], [28].
A recent comprehensive review on DMPC can be found
in [31]. However, the majority of existing DMPC algorithms
only focus on the stabilization of the system with a common
set point, assuming that all agents a priori know the desired
equilibrium information. For a vehicle platoon, such a
common set point corresponds to the leader’s state. However,
it is not practical to assume that all the followers can
communicate with the leader, which means that not all of
the followers know the desired set point in a platoon. The
purpose of this paper is to address the control issue of vehicle
platoons with a priori unknown desired set point under DMPC
framework. Most existing MPC works in this field rely on
the problem formulation of the adaptive cruise control (ACC)
[32], [33], which only involve two vehicles in the problem
formulation. There exist some extensions to the cooperative
ACC case, which involve multiple vehicles [14], [34].
Such treatments in [14] and [34], however, also directly
take two consecutive vehicles into the problem formulation,
which are only applicable to limited types of communication
topologies, i.e., the PF type and the predecessor-leader
following (PLF) type.

This paper presents a DMPC algorithm for heterogeneous
platoons with unidirectional topologies and a priori unknown
desired set point. The contribution of this paper is in two
aspects: 1) the proposed DMPC algorithm does not need
all nodes to a priori know the desired set point, which
is a significant improvement compared with many previous
studies [27]–[30] and 2) our findings not only explicitly
highlights the importance of communication topology in sta-
bilizing the entire platoon system, but also extends the results
in [14] and [34] to suit any arbitrary unidirectional topology.
Specifically, a platoon is viewed as a group of vehicles, which
are dynamically decoupled but interact with each other by
spatial geometry and communication topology. In a platoon,
only the followers, which directly communicate with the
leader, know the desired set point. Under the proposed DMPC,
each follower is assigned a local open-loop optimal control
problem only relying on the information of neighboring vehi-
cles, in which the errors between predicted trajectories and
assumed ones are penalized. A neighboring average-based
terminal constraint is proposed, by which the terminal state
of each node is enforced to be equal to the state average
of its neighboring nodes. We use the sum of the local cost
functions as a Lyapunov candidate, and prove that asymp-
totical stability can be achieved through explicit parametric
conditions on the weights of the cost functions under unidi-
rectional topologies. The material in this paper was partially
summarized in [2].

Fig. 1. Examples of unidirectional topology. (a) predecessor-following (PF),
(b) predecessor-leader following (PLF), (c) two-predecessor following (TPF),
(d) two-predecessor-leader following (TPLF).

The rest of this paper is organized as follows. In Section II,
the dynamic model, control objective, and the model of
communication topology in a platoon are presented. Section III
introduces the formulation of local optimal control problems.
The stability results are given in Section IV, followed by
the simulation results in Section V. Section VI concludes
this paper.

Notation: Throughout this paper, R and C stand for the set
of real numbers and complex numbers, respectively. We use
R

m×n to denote the set of m × n real matrices, and the set
of symmetric matrices of order n is denoted by S

n . For any
positive integer N , let N = {1, 2, . . . , N}. Given a symmetric
matrix M ∈ S

n , M ≥ 0 (M > 0) means that the matrix is
positive semidefinite (positive definite). The relation M1 ≥ M2
for symmetric matrices means that M1 − M2 ≥ 0. The identity
matrix of dimension n is denoted by In . diag(a1, . . . , aN ) is a
diagonal matrix with main diagonal entries a j and j ∈ N, and
the off-diagonal entries are zero. Given a matrix A ∈ R

n×n ,
and its spectrum radius is denoted by ρ(A). Given a vec-
tor x and a positive semidefinite matrix Q ≥ 0, we use
‖x‖Q = (x T Qx)1/2 to denote the weighted Euclidean norm.
The Kronecker product is denoted by ⊗, which facilitates
the manipulation of matrices by the following properties: 1)
(A ⊗ B)(C ⊗ D) = AC ⊗ B D and 2) (A ⊗ B)T = AT ⊗ BT .

II. PLATOON MODELING AND CONTROL OBJECTIVE

As shown in Fig. 1, this paper considers a heterogeneous
platoon with a broad selection of communication topologies
running on a flat road with N + 1 vehicles (or nodes), which
includes a leading vehicle (indexed by 0) and N following
vehicles (FVs, indexed from 1 to N). The communication
among nodes is assumed to be unidirectional from the preced-
ing vehicles to downstream ones, which are commonly used
in the field of vehicle platoon [22], such as PF, PLF, TPF, and
two-PLF (TPLF) (see Fig. 1 for examples).

The platoon is dynamically decoupled, but constrained by
the spatial formation. Each node has nonlinear dynamics with
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input constraints, but its desired set point with respect to
the leader might be unknown. Only the nodes that directly
communicate with the leader know the desired set point.
The control objective of the DMPC is to achieve a global
coordination in terms of movement and geometry even though
the exchanged information is local and limited to the neigh-
borhood of each node.

A. Nonlinear Platoon Model for Control

This paper only considers the vehicle longitudinal dynamics,
which are composed of engine, drive line, brake system, aero-
dynamic drag, tire friction, rolling resistance, and gravitational
force. To strike a balance between accuracy and conciseness,
it is assumed that: 1) the vehicle body is rigid and left–right
symmetric; 2) the platoon is on flat and dry-asphalt road, and
the tire slip in the longitudinal direction is neglected; 3) the
powertrain dynamics are lumped to be a first-order inertial
transfer function; and 4) the driving and braking torques
are integrated into one control input. Then, the discrete-time
model of any FV i is:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

si (t + 1) = si (t)+ vi (t)�t

vi (t + 1) = vi (t)+ �t

mveh,i

(
ηT ,i

Ri
Ti (t)− Fveh,i (vi (t))

)

Ti (t + 1) = Ti (t)− 1

τi
Ti (t)�t + 1

τi
ui (t)�t

Fveh,i (vi (t)) = CA,i v
2
i (t)+ mveh,i g fi (1)

where �t is the discrete time interval; si (t) and vi (t) denote
the position and velocity of node i ; mveh,i is the vehicle mass;
CA,i is the coefficient of aerodynamic drag; g is the gravity
constant; fi is the coefficient of rolling resistance; Ti (t) is
the integrated driving/braking torque; τi is the inertial lag
of longitudinal dynamics, Ri is the tire radius; ηT ,i is the
mechanical efficiency of the driveline; and ui (t) ∈ R is the
control input, representing the desired driving/braking torque.
The control input is subject to the box constraint

ui ∈ Ui = {umin,i ≤ ui ≤ umax,i } (2)

where umin,i and umax,i are the bounds. For each node, the
state is denoted as xi (t) = [si (t), v i (t), Ti (t)]T ∈ R

3×1,
and the output is denoted as yi (t) = [si (t), v i (t)]T ∈ R

2×1.
Further, (1) can be rewritten into a compact form

xi (t + 1) = φi (xi (t))+ ψi ·ui (t)

yi (t) = γ xi(t) (3)

where ψi = [0, 0, (1/τi )�t]T ∈ R
3×1; γ =

[
1 0 0
0 1 0

]

∈ R
2×3;

φi (xi ) ∈ R
3×1 is defined as

φi =

⎡

⎢
⎢
⎢
⎣

si (t)+ vi (t)�t

vi (t)+ �t

mveh,i

(
ηT ,i

Ri
Ti (t)− Fveh,i (vi (t))

)

Ti (t)− 1

τi
Ti (t)�t

⎤

⎥
⎥
⎥
⎦
.

Define X (t) ∈ R
3N×1, Y (t) ∈ R

2N×1, and U(t) ∈ R
N×1 as

the vectors of states, outputs, and inputs of all nodes, that is

X (t) = [
xT

1 (t), x T
2 (t), . . . , xT

N (t)
]T

Y (t) = [
yT

1 (t), yT
2 (t), . . . , yT

N (t)
]T

U(t) = [u1(t), . . . , uN (t)]T .

Then, the overall discrete-time dynamics of the platoon
becomes

X (t + 1) = �(X (t))+ � · U(t)

Y (t + 1) = � · X (t + 1) (4)

where � = [φ1(x1)
T , φ2(x2)

T , . . . , φN (xN )
T ]T ∈ R

3N×1

� = diag{ψ1, . . . , ψN } ∈ R
3N×N ,� = IN ⊗ γ ∈ R

2N×3N .
The model (1) for vehicle dynamics is inherently a third-

order nonlinear system, which can encapsulate a wide range
of vehicles. Note that the linear models are also widely
used in the platoon control for the sake of theoretical
completeness [6], [13], [15].

B. Objective of Platoon Control

The objective of the platoon control is to track the speed
of the leader while maintaining a desired gap between any
consecutive vehicles, which is specified by a desired spacing
policy, that is

⎧
⎨

⎩

lim
t→∞ ‖vi (t)− v0(t)‖ = 0

lim
t→∞ ‖si−1(t)− si (t)− di−1,i‖ = 0

, i ∈ N (5)

where di−1,i is the desired space between i − 1 and i . The
selection of di−1,i determines the geometry formation of the
platoon. Here, the constant spacing policy is used, that is

di−1,i = d0. (6)

C. Model of Communication Topology

An accurate model of the topological structure is critical to
design a coupled cost function in the DMPC. The communica-
tion topology in a platoon can be modeled by a directed graph
G = {V,E}, where V = {0, 1, 2, . . . , N} is the set of nodes,
and E ⊆ V×V is the set of edges in connection [21], [36]. The
properties of graph G are further reduced into the formation of
three matrices, i.e., adjacency matrix A, Laplacian matrix L,
and pinning matrix P.

The adjacency matrix is used to describe the directional
communication among the followers, which is defined as
A = [ai j ] ∈ R

N×N with each entry expressed as
{

ai j = 1, if { j, i} ∈ E

ai j = 0, if { j, i} /∈ E
i, j ∈ N (7)

where { j, i} ∈ E means that there is a directional edge from
node j to node i , i.e., node i can receive the information of
node j (or simply j → i). The Laplacian matrix L ∈ R

N×N

is defined as

L = D − A (8)
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Fig. 2. Examples of sets Ni and Oi . (a) Ni = {i1, i2, i3, i4}.
(b) O j = { j1, j2, j3, j4}.

where D ∈ R
N×N is called the in-degree matrix, defined as

D = diag{deg1, deg2, . . . , degN } (9)

where degi = ∑N
j=1 ai j represents the in-degree of node i

in G. The pinning matrix P ∈ R
N×N is used to model how

each follower connects to the leader, defined as

P = diag{p1, p2, . . . , pN } (10)

where pi = 1 if edge {0, i} ∈ E; otherwise, pi = 0. Node i is
said to be pinned to the leader if pi = 1, and only the nodes
pinned to the leader know the desired set point. We further
define the leader accessible set of node i as

Pi =
{

{0}, if pi = 1

∅, if pi = 0.

For the sake of completeness, several definitions are stated
as follows.

1) Directed Path: A directed path from node i1 to node
ik is a sequence of edges (i1, i2), (i2, i3), . . . , (ik−1, ik)
with (i j−1, i j ) ∈ E, ∀ j = {2, . . . , k}.

2) Spanning Tree: The graph G is said to contain a span-
ning tree if there is a root node such that there exists a
directed path from this node to every other node.

3) Neighbor Set: Node j is said to be a neighbor of node i
if and only if ai j = 1, j ∈ N. The neighbor set of node i
is denoted by Ni = { j |ai j = 1, j ∈ N}.

The set Ni means that node i can receive the information of
any j ∈ Ni . Similarly, we define a dual set Oi = { j |a j i = 1,
j ∈ N}, which means that node i sends its information to
any j ∈ Oi . Note that for an undirected topology, we have
Ni = Oi ; but for any directed topology, this equality does not
hold. Fig. 2 shows typical examples of sets Ni and Oi .

Note that the set Ii = Ni
⋃

Pi describes all the nodes,
which can send their information to node i . Hence, only the
information of nodes in Ii can be used to construct the local
optimal control problem for node i .

III. DESIGN OF DISTRIBUTED MODEL

PREDICTIVE CONTROL

This section introduces the formulation of DMPC for het-
erogeneous platoons. The position and velocity of the leader
are denoted by s0(t) and v0(t), respectively. The leader is

assumed to run at a constant speed, i.e., s0 = v0t . The desired
set point of state and input of node i is

{
xdes,i (t) = [sdes,i (t), vdes,i (t), T des,i (t)]T

udes,i (t) = Tdes,i (t)
(11)

where sdes,i (t) = s0(t) − i · d0, vdes,i (t) = v0, and
Tdes,i (t) = hi (v0), which is used to counterbalance the external
drag, defined as

hi (v0) = Ri

ηT ,i

(
CA,i v

2
0 + mveh,i g fi

)
. (12)

The corresponding equilibrium of output is
ydes,i (t) = γ xdes,i (t). Note that the constant speed assumption
for the leader characterizes the desired equilibrium for a
platoon, which is widely used for theoretical analysis in the
literature [3], [9], [13]–[16]. Note also that many previous
works on DMPC assume that all the nodes a priori know the
desired set point [14], [27], [28]. In this paper, it must be
pointed out that the desired set point is not universally known
for all the followers in a platoon, and only the nodes pinned
to the leader have access to the desired set information. The
method proposed in this paper can guarantee the consensus
of the desired set point among the followers when G contains
a spanning tree.

A. Local Open-Loop Optimal Control Problem

For each node i , the formulation of its local optimal
control problem only uses the information of the nodes in set
Ii = Ni

⋃
Pi . For the sake of narrative convenience, the nodes

in Ni are numbered as i1, i2, . . . , im . Define

y−i (t) = [
yT

i1 (t), yT
i2 (t), . . . , yT

im (t)
]T

u−i (t) = [
ui1 (t), ui2 (t), . . . , uim (t)

]T

as the vectors of the outputs and inputs of nodes in Ni ,
respectively. The same length of predictive horizon Np is used
in all local problems. Over the prediction horizon [t, t + Np ],
we define three types of trajectories.

1) yp
i (k|t): Predicted output trajectory.

2) y∗
i (k|t): Optimal output trajectory.

3) ya
i (k|t): Assumed output trajectory.

Here, k = 0, 1 . . . , Np . The notation y p
i (k|t) represents

the output trajectory that parameterizes the local optimal
control problem. The notation y∗

i (k|t) represents the opti-
mal solution after numerically solving the local problem.
The notation ya

i (k|t) is the assumed trajectory transmitted
to the nodes in set Oi , which is actually the shifted last-
step optimal trajectories of node i (see the precise definition
in Section III-B). Likewise, three types of control inputs are
also defined.

1) up
i (k|t): Predicted control input.

2) u∗
i (k|t): Optimal control input.

3) ua
i (k|t): Assumed control input.

Now we define the local open-loop optimal control problem
for each node i .
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Problem Fi : For i ∈ {1, 2, . . . , N} at time t

min
u p

i (0|t),...,u p
i (Np−1|t)

Ji
(
y p

i , u p
i , ya

i , ya−i

)

=
Np−1∑

k=0

li
(
y p

i (k|t), u p
i (k|t), ya

i (k|t), ya
−i (k|t)) (13a)

subject to

x p
i (k + 1|t) = φi

(
x p

i (k|t)) + ψi · u p
i (k|t)

y p
i (k|t) = γ · x p

i (k|t)
x p

i (0|t) = xi (t) (13b)

u p
i (k|t) ∈ Ui (13c)

y p
i (Np |t) = 1

|Ii |
∑

j∈Ii

(
ya

j (Np |t)+ d̃i, j
)

(13d)

T p
i (Np |t) = hi

(
vp

i (Np |t)) (13e)

where [u p
i (0|t), . . . , u p

i (Np − 1|t)] denotes the unknown vari-
ables to be optimized; |Ii | is the cardinality of set Ii ; and
d̃i, j = [di, j , 0]T denotes the desired distance vector between
i and j . The terminal constraint (13d) is to enforce that node i
has the same output as the average of assumed outputs in Ii

at the end of predictive horizon. The terminal constraint (13e)
is to enforce that node i moves at constant speed without
acceleration or deceleration at the end of predictive horizon.
These two terminal constraints are critical to the stability of
proposed DMPC.

The function li in (13a) is the cost associated with node i ,
defined as

li
(
y p

i (k|t), u p
i (k|t), ya

i (k|t), ya−i (k|t))

= ∥
∥y p

i (k|t)− ydes,i (k|t)∥∥Qi

+ ∥
∥u p

i (k|t)− hi
(
vp

i (k|t))∥∥Ri

+ ∥
∥y p

i (k|t)− ya
i (k|t)∥∥Fi

+
∑

j∈Ni

∥
∥y p

i (k|t)− ya
j (k|t)− d̃i, j

∥
∥

Gi
(14)

where Qi ∈ S
2, Ri ∈ R, Fi ∈ S

2, and Gi ∈ S
2 are the

weighting matrices. All the weighting matrices are assumed
to be symmetric and satisfy the following conditions.

1) Qi ≥ 0, which represents the strength to penalize the
output error from the desired equilibrium. Note that Qi

also contains the information whether node i is pinned to
the leader. If pi = 0, node i is unable to know its desired
set point, and therefore, Qi = 0 is always enforced.
If pi = 1, then Qi > 0 in its penalization functions.

2) Ri ≥ 0, which represents the strength to penalize the
input error diverged from equilibrium, meaning that the
controller prefers to maintain constant speed.

3) Fi ≥ 0, which means that node i tries to maintain
its assumed output. Note that this assumed output is
actually the shifted last-step optimal trajectory of the
same node, and this output is sent to the nodes in set Oi .

4) Gi ≥ 0, which means that node i tries to maintain
the output as close to the assumed trajectories of its
neighbors (i.e., j ∈ Ni ) as possible.

Remark 1: The construction of (13d) is based on the local
average of neighboring outputs, which is called neighboring
average-based terminal constraint. Thus, any node does not
need to a priori know the desired set point, which must rely on
pinning to the leader. This design is a significant improvement
compared with many previous studies, which assumes that
all the nodes inherently pin to the leader if not explicitly
mentioned, or only consider the stabilization of a priori known
set point [27]–[30].

Remark 2: The formulation of problem Fi only needs the
information from its neighbors; thus, it is suitable for vari-
ous communication topologies, including all of those shown
in Fig. 1. However, stability might not be ensured by a normal
DMPC law given by (13). A sufficient condition is needed to
rigorously ensure asymptotic stability, which will be discussed
and proved in Section IV.

Remark 3: Note that problem Fi needs a precise vehi-
cle model to predict the future output behavior. In addi-
tion to asymptotic stability (the focus of this paper),
another challenging issue is the robustness to model uncer-
tainty and noise, which is an active research topic [37].
Existing methods include robust optimization, worst case, and
scenario-based approaches for constrained linear systems with
disturbances [38]. We notice that a robust constraint proposed
in [39] might be integrated into problem Fi to address the
robustness issue. Besides, the coupling constraints for collision
avoidance in multiagent systems [18], [30] are not considered
in problem Fi , which deserves further research.

B. Algorithm of Distributed Model Predictive Control

The DMPC algorithm is shown as follows.
1) Initialization: At time t = 0, assume that all the

followers are moving at a constant speed, and initialize the
assumed values for node i as:

{
ua

i (k|0) = hi (vi (0))

ya
i (k|0) = y p

i (k|0) , k = 0, 1, . . . , Np − 1 (15)

where y p
i is iteratively calculated by

x p
i (k + 1|0) = φi

(
x p

i (k|0)) + ψi · ua
i (k|0)

y p
i (k|0) = γ x p

i (k|0), x p
i (0|0) = xi (0).

2) Iteration of DMPC: At any time t > 0, for all node
i = 1, . . . , N , the steps to be followed are as follows.

1) Optimize problem Fi according to its current state xi (t),
its own assumed output ya

i (k|t), and assumed outputs
from its neighbors ya

−i (k|t), yielding optimal control
sequence u∗

i (k|t), k = 0, 1, . . . , Np − 1.
2) Compute optimal state in the predictive horizon using

optimal control u∗
i (k|t)

x∗
i (k + 1|t) = φi

(
x∗

i (k|t)) + ψi · u∗
i (k|t)

k = 0, 1, . . . , Np−1

x∗
i (0|t) = xi (t). (16)

3) Compute the assumed control input [i.e., ua
i (k|t + 1)]

for next step by disposing first term and adding one
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Fig. 3. Basic procedure to construct assumed inputs.

additional term, that is

ua
i (k|t + 1)

=
{

u∗
i (k + 1|t), k = 0, 1, . . . , Np − 2

hi
(
v∗

i (Np |t)), k = Np − 1.
(17)

The corresponding assumed output is also computed as

xa
i (k + 1|t + 1) = φi

(
xa

i (k|t + 1)
) + ψi u

a
i (k|t + 1)

xa
i (0|t + 1) = x∗

i (1|t)
ya

i (k|t + 1) = γ xa
i (k|t + 1)

k = 0, 1, . . . , Np − 1. (18)

4) Transmit ya
i (k|t + 1) to the nodes in set Oi , receive

ya
−i (k|t +1) from the nodes in set Ni , and then compute

ydes,i (k|t + 1) using the leader’s information if Pi 
= ∅.
5) Implement the control effort using the first element of

optimal control sequence, i.e., ui (t) = u∗
i (0|t).

6) Increment t and go to step (1).
Remark 4: One key part of DMPC is how to construct the

assumed input and output in each node. Here, the assumed
variable is a shifted optimal result of last-step problem Fi ,
synthesized by disposing the first value and adding a last value.
The last added value ensures that the vehicle moves at a con-
stant speed. A similar technique can be found in [14] and [27].
Fig. 3 gives schematic procedure to construct assumed inputs.
Note that in this DMPC framework, all followers are assumed
to be synchronized in the step of control execution, i.e., updat-
ing the system state simultaneously within a common global
clock. However, neither computation nor communication is
assumed to happen instantaneously.

Remark 5: Another key feature of this DMPC algorithm
is that each node only needs to solve a local optimization
problem of small size relying on the information of its
neighbors in set Ni , and pass the results to the nodes in set Oi

at each time step. In addition, the computational complexity
of Fi is independent with the platoon size N , which implies the
proposed DMPC approach is scalable provided a single MPC
in each node can be solved efficiently. In this aspect, several

efficient computing techniques, such as utilizing particular
structure [40], using explicit MPC via a lookup table [41],
and reducing the dimension via the parameterization method
and “move blocking” method [42], might be employed to
solve each single MPC problem for real-time implementations,
which would be extremely interesting for further research.

IV. STABILITY ANALYSIS OF THE DMPC ALGORITHM

This section presents the stability analysis of the proposed
DMPC algorithm. The main strategy is to construct a proper
Lyapunov candidate for the platoon and prove its decreasing
property. A sufficient condition for asymptotic stability is
derived by using the sum of local cost functions as a Lyapunov
function. The condition shows that stability can be achieved
through explicit sufficient conditions on the weights in the cost
functions.

A. Terminal Constraint Analysis

For the completeness of proof, we first present the assump-
tion made on allowable topologies.

Assumption 1: The graph G contains a spanning tree rooting
at the leader, and the communications are unidirectional from
preceding vehicles to downstream ones.

The topologies satisfying abovementioned Assumption 1 are
called unidirectional topology for short. Fig. 1 shows some
typical examples. The following lemmas are useful for stability
analysis.

Lemma 1 [35]: Suppose that λ1, . . . , λn be the eigenvalues
of A ∈ R

n×n and μ1, . . . , μm be those of B ∈ R
m×m . Then,

the eigenvalues of A ⊗ B are

λiμ j , i = 1, . . . , n, j = 1, . . . ,m.

Lemma 2 [35]: Let a matrix Q = [qi j ] ∈ R
n×n . Then, all

the eigenvalues of Q are located in the union of the n disks

n⋃

i=1

⎧
⎨

⎩
λ ∈ C||λ− qii | ≤

n∑

j=1, j 
=i

|qi j |
⎫
⎬

⎭
.

This is the well-known Geršgorin Disk Criterion.
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Lemma 3 [21], [36]: Matrix L + P is nonsingular if G

contains a spanning tree rooting at the leader.
Lemma 4: If G contains a spanning tree rooting at the leader,

then D+P is invertible and all the eigenvalues of (D+P)−1A

are located within a unit circle, that is

{λ ∈ C||λ| < 1}. (19)

Proof: Since G contains a spanning tree, for any i ∈ N,
we have that either the in-degree of node i is larger than zero,
i.e., degi> 0, or node i is pinned to the leader, i.e., pi = 1, or
both of them are true. Either way, we know degi + pi ≥ 1,
and considering the fact that D + P is a diagonal matrix, we
have

D + P > 0. (20)

Thus, D + P is invertible.
Let σi , i ∈ N be the eigenvalues of (D+P)−1A. Consider-

ing the definition (7), the diagonal elements of (D + P)−1A

are all equal to zero. Then, according to Lemma 2, σi , i ∈ N

are located in the union of N disks:
N⋃

i=1

⎧
⎨

⎩
λ ∈ C||λ− 0| ≤

N∑

j=1, j 
=i

∣
∣
∣
∣

ai j

degi + pi

∣
∣
∣
∣

⎫
⎬

⎭
. (21)

Further, we have
N∑

j=1, j 
=i

∣
∣
∣
∣

ai j

degi + pi

∣
∣
∣
∣ =

∣
∣
∣
∣

degi

degi + pi

∣
∣
∣
∣ ≤ 1. (22)

Combining (21) and (22), σi , i ∈ N are bounded by a unit
circle

{λ ∈ C||λ| ≤ 1}. (23)

Next we will prove that σi cannot be located on the
boundary of the unit circle by contradiction. Suppose that
some eigenvalues are located on the boundary, that is

ρ((D + P)−1A) = 1. (24)

Since (D + P)−1A is nonnegative, one of its eigenvalues
is equal to one according to (24) [35]. Let the corresponding
eigenvector be x , then the following equality holds:

(D + P)−1A · x = x . (25)

Considering the fact A = D − L, we have

(L + P) · x = 0. (26)

Then, L + P is a singular from (26), which is in contradic-
tion with Lemma 3. Therefore, σi cannot be located on the
boundary, which means

{λ ∈ C||λ| < 1}. (27)

Here, we have the following theorem.
Theorem 1: If G contains a spanning tree rooting at the

leader, the terminal state in the predictive horizon of problem
Fi asymptotically converges to the desired state, that is

lim
t→∞

∣
∣y p

i (Np |t)− ydes,i (Np |t)∣∣ = 0 (28)

where ydes,i (Np |t) = [s0(Np |t)− i · d0, v0]T .

Proof: Constrained by (13e), each node moves at constant
speed at the end of predictive horizon. Considering assumed
control input (17), we have

ya
i (Np |t+1) = y p

i (Np |t)+ B · y p
i (Np |t) ·�t

B =
[

0 1
0 0

]

. (29)

Submitting (29) into (13d) yields

y p
i (Np |t + 1) = 1

|Ii |
∑

j∈Ii

(
y p

j (Np |t)+By p
j (Np |t) ·�t+d̃i, j

)
.

(30)

Define the tracking error vector as

ŷ p
i (Np |t) = y p

i (Np |t)− ydes,i (Np |t) (31)

and we have (32) by combining (30) and (31)

ŷ p
i (Np |t + 1) = 1

|Ii |
∑

j∈Ii

(I2 + B�t)ŷ p
j (Np |t). (32)

Define the collected terminal state vector as Y p(Np |t) =
[ŷ p

j (Np |t), . . . , ŷ p
j (Np |t)]T ∈ R

2N×1, then (32) can be further
written into a compact form

Y p(Np |t + 1) = [(D + P)−1 · A] ⊗ (I2 + B�t) · Y p(Np |t).
(33)

It is easy to verify that the eigenvalues of I2 + B�t are
all equal to one. Besides, according to Lemma 4, all the
eigenvalues of (D + P)−1A are located within a unit circle.
Thus, by Lemma 1, the eigenvalues of [(D + P)−1 · A] ⊗
(I2 + B�t) are all located within a unit circle as well, that is

{λ ∈ C||λ| < 1}. (34)

Then, based on (33), we know Y p(Np |t) asymptotically
converges to zero, which means

lim
t→∞

∣
∣y p

i (Np |t)− ydes,i (Np |t)∣∣ = 0. (35)

Theorem 2: If G satisfies Assumption 1, the terminal state in
the predictive horizon of problem Fi converges to the desired
state in at most N steps, that is

y p
i (Np |t) = ydes,i (Np |t), t ≥ N. (36)

Proof: If G is unidirectional, then A is a lower triangular
matrix with diagonal entries be zero. Based on (20), D+P>0.
Therefore, the eigenvalues of (D + P)−1A are all zero, and
(D + P)−1A is nilpotent with degree at most N .

By Lemma 1, we further have that the eigenvalues
of [(D + P)−1 · A] ⊗ (I2 + B�t) are all zero as well. Hence,
Y p(Np |t) can converge to zero in at most N steps, which
means that y p

i (Np |t) in Fi converges to the desired state in at
most N steps.

Remark 6: Even though not every follower directly com-
municates with the leader, the terminal state of each node
can still converge to its desired set point within finite time
under Assumption 1, which means this DMPC scheme does
not require all nodes a priori know the desired set point.
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Note that in the proposed DMPC algorithm, the number of
time steps required for the consensus of the terminal states
is upper bounded by the platoon size (i.e., N). This implies
an intuitive fact that the speed of sharing leader’s information
is directly affected by the size of a platoon for unidirectional
topologies.

Remark 7: For homogenous platoons with linear dynamics
and linear controllers, it is well demonstrated that stability
requires at least a spanning tree rooting at the leader [21], [36].
Even using an MPC technique, a spanning tree is also a prereq-
uisite to achieve a stable platoon. Intuitively, this requirement
means that every follower can obtain the leader information
directly or indirectly.

Remark 8: The length of predictive horizon Np has no
explicit relationship with platoon size N in terms of asymptotic
stability. It should be noted that the analysis of terminal
constraint relies on the assumption that each local optimization
problem Fi is feasible for the first N steps. This is called initial
feasible assumption, which is widely used in previous studies
on the DMPC [14], [27]–[29], [39]. After the consensus of
the terminal states, the property of recursive feasibility holds
(see Lemma 5). Consequently, Np should be large enough
to get a feasible solution for problem Fi (note that initial
errors will also affect the feasibility in addition to the model
and constraints). However, a large Np will lead to a great
computing burden in terms of computation time and memory
requirement. The optimal choice of time horizon Np should
be a balance of performance and computational effort [37],
which is beyond the scope of this paper.

B. Analysis of Local Cost Function

The optimal cost function of node i at time t is denoted as

J ∗
i (t) = J ∗

i

(
y∗

i (: |t), u∗
i (: |t), ya

i (: |t), ya−i (: |t)). (37)

The following is a standard result in MPC formulation.
Lemma 5 [14]: If we replace (13d) with y p

i (Np |t) =
ydes,i (Np |t), then problem Fi has

(
y p

i (: |t), u p
i (: |t)) = (

ya
i (: |t), ua

i (: |t)) (38)

as a feasible solution for any time t > 0.
Note that Lemma 5 is the property of recursive feasibility.

The assumed control ua
i (: |t) defined in (17) is the same

feasible control used in [14] and [27]. The remaining part
of this section is to analyze the decreasing properties of local
cost function. Here, we have the following theorem.

Theorem 3: If G satisfies Assumption 1, each local cost
function satisfies

J ∗
i (t + 1)− J ∗

i (t)

≤ −li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya
−i (0|t))+εi , t > N (39)

where

εi =
Np−1∑

k=1

⎧
⎨

⎩

∑

j∈Ni

∥
∥y∗

j (k|t)− ya
j (k|t)∥∥Gi

− ∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

⎫
⎬

⎭
.

Proof: If G satisfies Assumption 1, Theorem 2 gives
that y p

i (Np |t) − ydes,i (Np |t) = 0, t ≥ N . Then, at time
t + 1, t ≥ N,a feasible (but suboptimal) control for Fi is
u p

i (: |t + 1) = ua
i (: |t + 1). Therefore, we can bound the

optimal cost as

J ∗
i (t + 1)

≤ Ji
(
ya

i (: |t + 1), ua
i (: |t + 1), ya

i (: |t + 1), ya−i (: |t + 1)
)

=
Np−1∑

k=0

li
(
ya

i (k|t + 1), ua
i (k|t + 1), ya

i (k|t + 1), ya
−i (k|t+1)

)

=
Np−2∑

k=0

li
(
y∗

i (k+1|t), u∗
i (k + 1|t), y∗

i (k + 1|t), y∗−i (k+1|t)).

(40)

The equality holds because of how ua
i (k|t + 1) and

ya
i (k|t + 1) are defined by (17) and (18).
Further, by changing the index of summation, (40) becomes

J ∗
i (t + 1) ≤

Np−1∑

k=1

li
(
y∗

i (k|t), u∗
i (k|t), y∗

i (k|t), y∗−i (k|t)). (41)

Subtracting J ∗
i (t) from (41) yields

J ∗
i (t + 1)− J ∗

i (t)

≤
Np−1∑

k=1

li
(
y∗

i (k|t), u∗
i (k|t), y∗

i (k|t), y∗−i (k|t))

−
Np−1
∑

k=0

li
(
y∗

i (k|t), u∗
i (k|t), ya

i (k|t), ya
−i (k|t))

= −li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya
−i (0|t)) +

Np−1∑

k=1

�k (42)

where

�k = li
(
y∗

i (k|t), u∗
i (k|t), y∗

i (k|t), y∗−i (k|t))
− li

(
y∗

i (k|t), u∗
i (k|t), ya

i (k|t), ya−i (k|t))
= ∥

∥y∗
i (k|t)− ydes,i(k|t)∥∥Qi

+ ∥
∥u∗

i (k|t)− hi
(
v∗

i (k|t))∥∥Ri

+ ∥
∥y∗

i (k|t)− y∗
i (k|t)∥∥Fi

+
∑

j∈Ni

∥
∥y∗

i (k|t)− y∗
j (k|t)− d̃i, j

∥
∥

Gi

−
⎧
⎨

⎩

∥
∥y∗

i (k|t)−ydes,i(k|t)∥∥Qi
+ ∥

∥u∗
i (k|t)− hi

(
v∗

i (k|t))∥∥Ri

+ ∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

+
∑

j∈Ni

∥
∥y∗

i (k|t)− ya
j (k|t)− d̃i, j

∥
∥

Gi

⎫
⎬

⎭
. (43)

With the triangle inequality for vector norms, (43) becomes

�k ≤
∑

j∈Ni

∥
∥y∗

j (k|t)− ya
j (k|t)∥∥Gi

− ∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

.

(44)

Combining (42) and (44) yields (39).
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Remark 9: Note that (39) gives an upper bound on the
decline of local cost function. If we have

εi ≤ li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya−i (0|t)) (45)

then local cost function decreases monotonically, which means
it is a proper Lyapunov function and also leads to asymptotic
stability of DMPC. The difficulty of using (45) to design
DMPC is obvious, i.e., there is no intuitive way to adjust
control parameters. One alternative is to use the sum of local
cost functions as a Lyapunov function as suggested by [28].

C. Sum of Local Cost Functions
Define the sum of all local cost functions as the Lyapunov

candidate

J ∗
�(t) =

N∑

i=1

J ∗
i

(
y∗

i (: |t), u∗
i (: |t), ya

i (: |t), ya−i (: |t)). (46)

Then, we have the following theorem.
Theorem 4: If G satisfies Assumption 1, J ∗

�(t) satisfies

J ∗
�(t + 1)− J ∗

�(t)

≤ −
N∑

i=1

li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya−i (0|t))

+
Np−1∑

k=1

ε�(k), t > N (47)

where

ε�(k) =
N∑

i=1

⎡

⎣
∑

j∈Oi

∥
∥y∗

i (k|t)− ya
i (k|t)∥∥G j

−∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

]

.

Proof: According to Theorem 3, we have

J ∗
�(t + 1)− J ∗

�(t)

≤
N∑

i=1

{ − li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya−i (0|t)) + εi
}

= −
N∑

i=1

li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya
−i (0|t)) +

N∑

i=1

εi .

(48)

Further, we know

N∑

i=1

εi =
Np−1
∑

k=1

⎧
⎨

⎩

N∑

i=1

⎡

⎣
∑

j∈Ni

∥
∥y∗

j (k|t)− ya
j (k|t)∥∥Gi

−∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

]}

=
Np−1∑

k=1

⎧
⎨

⎩

N∑

i=1

⎡

⎣
∑

j∈Oi

∥
∥y∗

i (k|t)− ya
i (k|t)∥∥G j

−∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

]}

=
Np−1∑

k=1

ε�(k). (49)

Combining (48) and (49) yields (47).
Remark 10: The key in the proof of Theorem 4 is to change

Ni to Oi by considering all followers in the platoon. Note
that (47) is also an upper bound on the decline of the sum of
local cost function. Moreover, it is relatively easy for designers
to find a sufficient condition to guarantee J ∗

�(t+1)−J ∗
�(t)<0.

D. Sufficient Condition of DMPC Stability

The explicit sufficient stability condition is now stated as
follows.

Theorem 5: If G satisfies Assumption 1, a platoon under
the DMPC (13) is asymptotically stable if satisfying

Fi ≥
∑

j∈Oi

G j , i ∈ N. (50)

Proof: If (50) holds, we have

zT

⎛

⎝
∑

j∈Oi

G j − Fi

⎞

⎠ z ≤ 0 ∀z ∈ R
2. (51)

Let z = y∗
i (k|t)− ya

i (k|t), then

∑

j∈Oi

∥
∥y∗

i (k|t)− ya
i (k|t)∥∥G j

− ∥
∥y∗

i (k|t)− ya
i (k|t)∥∥Fi

≤ 0.

(52)

Combining Theorem 4, we have

J ∗
�(t + 1)− J ∗

�(t)

≤ −
N∑

i=1

li
(
y∗

i (0|t), u∗
i (0|t), ya

i (0|t), ya−i (0|t)). (53)

The upper bound in (53) shows that J ∗
�(t) is strictly

monotonically decreasing. Thus, the asymptotic stability of
the DMPC is guaranteed.

Remark 11: Theorem 5 shows that for heterogeneous pla-
toons under unidirectional topologies, it only needs to adjust
the weights on the errors between the predicted trajectories
and assumed ones to guarantee asymptotic stability. Note that
condition (50) in Theorem 5 is distributed with respect to the
vehicles in the platoon. The followers in a platoon do not
need the centralized information to choose their own penalty
weights.

Remark 12: Notation Oi = { j |a j i = 1} in (50) is defined as
the nodes that can use the information of node i . This provides
an interesting phenomenon, i.e., to ensure stability implies that
all the nodes in Oi should not rely heavily on the information
of node i unless node i shows good-enough consistence with
its own assumed trajectory.

Remark 13: Many previous studies on the platoon control
using the DMPC techniques are only suitable for some special
topologies, for example [14] and [34]. Theorem 5 extends
the topological selection to be any arbitrary unidirectional
topology (defined in Assumption 1), which can include many
other types of topologies (see Fig. 1 for examples).
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TABLE I

PARAMETERS OF THE FVS IN THE PLATOON

TABLE II

WEIGHTS IN THE COST FUNCTONS

V. SIMULATION RESULTS

In this section, numerical simulations are conducted to
illustrate the main results of this paper. We consider a hetero-
geneous platoon with eight vehicles (i.e., one leader and seven
followers) interconnected by the four types of communication
topologies shown in Fig. 1.

The acceleration of the leader can be viewed as disturbances
in a platoon [15], [22]. The initial state of the leader is set as
s0(t) = 0, v0 = 20 m/s and the desired trajectory is given by

v0 =

⎧
⎪⎨

⎪⎩

20 m/s t ≤ 1 s

20 + 2t m/s 1 s < t ≤ 2 s

22 m/s t > 2 s.

The parameters of the FVs are randomly selected according
to the passenger vehicles [18], which are listed in Table I.
In the simulation, the box constraints on tracking/braking
torque are reflected by the maximum acceleration and deceler-
ation, i.e., amax,i = 6 m/s2 and amin,i = −6 m/s2. The discrete
time interval is chosen as �t = 0.1 s, and the predictive
horizon in the Fi is all set as Np = 20. Table II lists the
corresponding weights in the Fi , which can be easily verified
to satisfy the conditions in Theorem 5.

In the simulations, the desired spacing is set as
di−1,i = 20 m. The initial state of the platoon is set as the
desired state, i.e., the initial spacing errors and velocity errors

Fig. 4. Spacing errors for the platoon under different topologies. (a) PF.
(b) PLF. (c) TPF. (d) TPLF.

are all equal to 0. Fig. 4 shows the spacing errors of the platoon
under different topologies. It is easy to find that the platoon
using the DMPC is stable for all the topologies listed in Fig. 1,
which conforms to the results in Theorem 5. In addition, for
this simulation scenario, the spacing errors are less than 1 m
for the platoons with all of the four communication topologies.
This result also shows that there are no collisions during the
transient process.

VI. CONCLUSION

This paper proposes a novel DMPC algorithm for vehicle
platoons with nonlinear dynamics and unidirectional topolo-
gies, and derives a sufficient condition to guarantee asymptotic
stability. This approach does not require all vehicles a priori
know the desired set point, which offers considerable benefit
from the viewpoint of real implementations.

Under the proposed DMPC framework, the platoon is
dynamically decoupled, but constrained by the spatial for-
mation. Each vehicle has nonlinear dynamics with input
constraints, but does not necessarily know its desired set
point. Each vehicle solves a local optimal control problem
to obtain its own control input, and then sends its assumed
output trajectory to its neighbors. A neighboring average-
based terminal constraint is introduced in the formulation of
local optimal problems, which guarantees that all terminal
states in the predictive horizon can converge to the desired
state in finite time when the topology is unidirectional and
contains a spanning tree. By using the sum of the local
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cost functions as the Lyapunov function, it is further proved
that asymptotic stability can be achieved through an explicit
sufficient condition on the weights of the cost functions.

One topic for future research is to improve the DMPC
algorithm by deriving the stability condition under more
general topologies. Besides, other important issues include
how to address the disturbances and uncertainty in the dynam-
ics, and how to handle the packet drops and delays in the
communication between the vehicles.
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